

Prepared for:

#### SUPERIOR MOLECULAR LLC

4459 WHITE BEAR PKWY WHITE BEAR LAKE, MN USA 55110

## Simply Crafted Blackberry D9 01/10/2024

| Batch ID or Lot Number: SCBB.D9.011024 | Test, Test ID and Methods:<br>Various | Matrix:<br>Finished Product | Page 1 of 5 |
|----------------------------------------|---------------------------------------|-----------------------------|-------------|
| Reported:                              | Started:                              | Received:                   |             |
| 18Jan2024                              | 18Jan2024                             | 17Jan2024                   |             |

### **Heavy Metals**

Test ID: T000267892

Methods: TM19 (ICP-MS): Heavy

| Metals  | Dynamic Range (ppm) | Result (ppm) | Notes |
|---------|---------------------|--------------|-------|
| Arsenic | 0.05 - 4.51         | ND           |       |
| Cadmium | 0.05 - 4.59         | ND           | -     |
| Mercury | 0.05 - 4.59         | ND           | -     |
| Lead    | 0.05 - 4.65         | ND           |       |

#### **Final Approval**

Sawantha Small 18Jan2024 02:49:00 PM MST

Sam Smith

APPROVED BY / DATE

Karen Winternheimer 18Jan2024

PREPARED BY / DATE

### **Residual Solvents**

Test ID: T000267893

Methods: TM04 (GC-MS): Residual

| Methous. 114104 (GC-1413). Residual |                            |              |       |
|-------------------------------------|----------------------------|--------------|-------|
| Solvents                            | <b>Dynamic Range</b> (ppm) | Result (ppm) | Notes |
| Propane                             | 72 - 1432                  | ND           |       |
| Butanes (Isobutane, n-Butane)       | 159 - 3177                 | ND           |       |
| Methanol                            | 59 - 1178                  | ND           |       |
| Pentane                             | 81 - 1620                  | ND           |       |
| Ethanol                             | 88 - 1762                  | ND           |       |
| Acetone                             | 94 - 1877                  | ND           |       |
| Isopropyl Alcohol                   | 92 - 1831                  | ND           |       |
| Hexane                              | 6 - 121                    | ND           |       |
| Ethyl Acetate                       | 100 - 2000                 | ND           |       |
| Benzene                             | 0.2 - 3.9                  | ND           |       |
| Heptanes                            | 94 - 1889                  | ND           |       |
| Toluene                             | 18 - 364                   | ND           |       |
| Xylenes (m,p,o-Xylenes)             | 128 - 2561                 | ND           |       |

**Final Approval** 

PREPARED BY / DATE

Karen Winternheimer 19Jan2024

Somenthe Smith 19Jan2024 02:26:00 PM MST

Sam Smith



Prepared for:

### SUPERIOR MOLECULAR LLC

4459 WHITE BEAR PKWY WHITE BEAR LAKE, MN USA 55110

### Simply Crafted Blackberry D9 01/10/2024

| Batch ID or Lot Number: SCBB.D9.011024 | Test, Test ID and Methods:<br>Various | Matrix:<br>Finished Product | Page 2 of 5 |
|----------------------------------------|---------------------------------------|-----------------------------|-------------|
| Reported:                              | Started:                              | Received:                   |             |
| 18Jan2024                              | 18Jan2024                             | 17Jan2024                   |             |

#### **Cannabinoids**

| Test ID: T000267889           |          |          |             |               |                    |
|-------------------------------|----------|----------|-------------|---------------|--------------------|
| Methods: TM14 (HPLC-DAD)      | LOD (mg) | LOQ (mg) | Result (mg) | Result (mg/g) | Notes              |
| Cannabichromene (CBC)         | 0.370    | 0.993    | ND          | ND            | # of Servings = 1, |
| Cannabichromenic Acid (CBCA)  | 0.338    | 0.909    | ND          | ND            | Sample Weight=4g   |
| Cannabidiol (CBD)             | 1.125    | 2.871    | ND          | ND            |                    |
| Cannabidiolic Acid (CBDA)     | 1.154    | 2.944    | ND          | ND            | •                  |
| Cannabidivarin (CBDV)         | 0.266    | 0.679    | ND          | ND            |                    |
| Cannabidivarinic Acid (CBDVA) | 0.481    | 1.228    | ND          | ND            |                    |
| Cannabigerol (CBG)            | 0.210    | 0.564    | ND          | ND            | 9                  |
|                               |          |          |             |               | -                  |

| 1.154<br>0.266 | 2.944<br>0.679                                                                | ND                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                     |
|----------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.266          | 0.679                                                                         | 115                                                                                                                         |                                                                                                                                                                                                                                                                                                                        |
|                | 2.2.5                                                                         | ND                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                     |
| 0.481          | 1.228                                                                         | ND                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                     |
| 0.210          | 0.564                                                                         | ND                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                     |
| 0.877          | 2.358                                                                         | ND                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                     |
| 0.274          | 0.736                                                                         | ND                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                     |
| 0.598          | 1.609                                                                         | ND                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                     |
| 1.045          | 2.809                                                                         | ND                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                     |
| 0.949          | 2.551                                                                         | 4.980                                                                                                                       | 1.20                                                                                                                                                                                                                                                                                                                   |
| 0.841          | 2.260                                                                         | ND                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                     |
| 0.191          | 0.513                                                                         | ND                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                     |
| 0.742          | 1.993                                                                         | ND                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                     |
|                |                                                                               | 4.980                                                                                                                       | 1.20                                                                                                                                                                                                                                                                                                                   |
|                |                                                                               | 4.980                                                                                                                       | 1.20                                                                                                                                                                                                                                                                                                                   |
|                |                                                                               | ND                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                     |
|                | 0.481<br>0.210<br>0.877<br>0.274<br>0.598<br>1.045<br>0.949<br>0.841<br>0.191 | 0.481 1.228   0.210 0.564   0.877 2.358   0.274 0.736   0.598 1.609   1.045 2.809   0.949 2.551   0.841 2.260   0.191 0.513 | 0.481     1.228     ND       0.210     0.564     ND       0.877     2.358     ND       0.274     0.736     ND       0.598     1.609     ND       1.045     2.809     ND       0.949     2.551     4.980       0.841     2.260     ND       0.191     0.513     ND       0.742     1.993     ND       4.980       4.980 |

**Final Approval** 

Karen Winternheimer 19Jan2024 Withhume 01:29:00 PM MST

PREPARED BY / DATE

Samantha Smill 19Jan2024 01:30:00 PM MST

Sam Smith



Prepared for:

### SUPERIOR MOLECULAR LLC

4459 WHITE BEAR PKWY WHITE BEAR LAKE, MN USA 55110

### Simply Crafted Blackberry D9 01/10/2024

| Batch ID or Lot Number: SCBB.D9.011024 | Test, Test ID and Methods:<br>Various | Matrix:<br>Finished Product | Page 3 of 5 |
|----------------------------------------|---------------------------------------|-----------------------------|-------------|
| Reported:                              | Started:                              | Received:                   |             |
| 18Jan2024                              | 18Jan2024                             | 17Jan2024                   |             |

### **Microbial**

### **Contaminants**

Test ID: T000267891

| Methods: TM25 (PCR) TM24, TM26, |                          | Quantitation            |                                           |               |                                                   |
|---------------------------------|--------------------------|-------------------------|-------------------------------------------|---------------|---------------------------------------------------|
| TM27 (Culture Plating)          | Method                   | LOD                     | Range                                     | Result        | Notes                                             |
| STEC                            | TM25: PCR                | 10 <sup>0</sup> CFU/25g | NA                                        | Absent        | Free from visual mold, mildew, and foreign matter |
| Salmonella                      | TM25: PCR                | 10 <sup>0</sup> CFU/25g | NA                                        | Absent        | - Toreign matter                                  |
| Total Yeast and Mold*           | TM24: Culture<br>Plating | 10 <sup>1</sup> CFU/g   | 1.0x10 <sup>2</sup> - 1.5x10 <sup>4</sup> | None Detected | -                                                 |
| Total Aerobic Count*            | TM26: Culture<br>Plating | 10 <sup>2</sup> CFU/g   | 1.0x10 <sup>3</sup> - 1.5x10 <sup>5</sup> | None Detected | _                                                 |
| Total Coliforms*                | TM27: Culture<br>Plating | 10 <sup>1</sup> CFU/g   | 1.0x10 <sup>2</sup> - 1.5x10 <sup>4</sup> | None Detected | -                                                 |

**Final Approval** 

Rest law Brett Hudson 21Jan2024 01:02:00 PM MST

Eden Thompson

Eden Thompson-Wright 22Jan2024 10:18:00 AM MST

PREPARED BY / DATE



Prepared for:

### SUPERIOR MOLECULAR LLC

4459 WHITE BEAR PKWY WHITE BEAR LAKE, MN USA 55110

## Simply Crafted Blackberry D9 01/10/2024

| Batch ID or Lot Number: SCBB.D9.011024 | Test, Test ID and Methods:<br>Various | Matrix:<br>Finished Product | Page 4 of 5 |
|----------------------------------------|---------------------------------------|-----------------------------|-------------|
| Reported:                              | Started:                              | Received:                   |             |
| 18Jan2024                              | 18Jan2024                             | 17Jan2024                   |             |

### **Pesticides**

Test ID: T000267890 Methods: TM17

| (LC-QQ LC MS/MS)    | Dynamic Range (ppb) | Result (ppb) |
|---------------------|---------------------|--------------|
| Abamectin           | 278 - 2656          | ND           |
| Acephate            | 43 - 2744           | ND           |
| Acetamiprid         | 44 - 2697           | ND           |
| Azoxystrobin        | 45 - 2680           | ND           |
| Bifenazate          | 38 - 2657           | ND           |
| Boscalid            | 53 - 2709           | ND           |
| Carbaryl            | 41 - 2679           | ND           |
| Carbofuran          | 44 - 2697           | ND           |
| Chlorantraniliprole | 55 - 2700           | ND           |
| Chlorpyrifos        | 48 - 2745           | ND           |
| Clofentezine        | 282 - 2696          | ND           |
| Diazinon            | 277 - 2699          | ND           |
| Dichlorvos          | 281 - 2763          | ND           |
| Dimethoate          | 42 - 2722           | ND           |
| E-Fenpyroximate     | 244 - 2799          | ND           |
| Etofenprox          | 44 - 2722           | ND           |
| Etoxazole           | 281 - 2664          | ND           |
| Fenoxycarb          | 34 - 2690           | ND           |
| Fipronil            | 38 - 2737           | ND           |
| Flonicamid          | 49 - 2702           | ND           |
| Fludioxonil         | 285 - 2671          | ND           |
| Hexythiazox         | 43 - 2741           | ND           |
| Imazalil            | 276 - 2723          | ND           |
| Imidacloprid        | 43 - 2781           | ND           |
| Kresoxim-methyl     | 43 - 2720           | ND           |

|                 | Dynamic Range (ppb) | Result (ppb) |
|-----------------|---------------------|--------------|
| Malathion       | 287 - 2674          | ND           |
| Metalaxyl       | 42 - 2689           | ND           |
| Methiocarb      | 45 - 2718           | ND           |
| Methomyl        | 43 - 2771           | ND           |
| MGK 264 1       | 159 - 1614          | ND           |
| MGK 264 2       | 114 - 1090          | ND           |
| Myclobutanil    | 64 - 2706           | ND           |
| Naled           | 45 - 2654           | ND           |
| Oxamyl          | 43 - 2759           | ND           |
| Paclobutrazol   | 45 - 2710           | ND           |
| Permethrin      | 279 - 2735          | ND           |
| Phosmet         | 37 - 2583           | ND           |
| Prophos         | 279 - 2711          | ND           |
| Propoxur        | 44 - 2704           | ND           |
| Pyridaben       | 293 - 2727          | ND           |
| Spinosad A      | 35 - 2081           | ND           |
| Spinosad D      | 66 - 670            | ND           |
| Spiromesifen    | 274 - 2709          | ND           |
| Spirotetramat   | 277 - 2760          | ND           |
| Spiroxamine 1   | 17 - 1003           | ND           |
| Spiroxamine 2   | 24 - 1617           | ND           |
| Tebuconazole    | 279 - 2705          | ND           |
| Thiacloprid     | 44 - 2715           | ND           |
| Thiamethoxam    | 45 - 2748           | ND           |
| Trifloxystrobin | 46 - 2705           | ND           |

**Final Approval** 

25Jan2024 11:26:00 AM MST PREPARED BY / DATE

Karen Winternheimer

Sawantha Smill 25Jan2024 11:27:00 AM MST

Sam Smith



Prepared for:

#### SUPERIOR MOLECULAR LLC

4459 WHITE BEAR PKWY WHITE BEAR LAKE, MN USA 55110

### Simply Crafted Blackberry D9 01/10/2024

| Batch ID or Lot Number: SCBB.D9.011024 | Test, Test ID and Methods:<br>Various | Matrix:<br>Finished Product | Page 5 of 5 |
|----------------------------------------|---------------------------------------|-----------------------------|-------------|
| Reported:                              | Started:                              | Received:                   |             |
| 18Jan2024                              | 18Jan2024                             | 17Jan2024                   |             |



https://results.botanacor.com/api/v1/coas/uuid/65330219-f2dd-43c1-b77c-986e8d25cc2a

#### Definitions

LOD = Limit of Detection, ULOQ = Upper Limit of Quantitation, LLOQ = Lower Limit of Quantitation, PPB = Parts per Billion, % = % (w/w) = Percent (weight of analyte / weight of product). ND = None Detected (defined by dynamic range of the method). Total Potential Delta 9-THC or CBD is calculated to take into account the loss of a carboxyl group during decarboxylation step, using the following formulas: Total Potential Delta 9-THC = Delta 9-THC + (Delta 9-THCa \*(0.877)) and Total CBD = CBD + (CBDa \*(0.877)). Fail equates to a concentration level of Delta 9-THC, on a dry weight basis, higher than 0.3 percent + or - the measurement uncertainty. Total Potential THC is calculated using the following formulas to take into account the loss of a carboxyl group during decarboxylation step. Total THC = THC + (THCa \*(0.877)). ALOQ = Above Limit Of Quantitation (defined by dynamic range of the method), CFU/g = Colony Forming Units per Gram. Values recorded in scientific notation, a common microbial practice of expressing numbers that are too large to be conveniently written in decimal form. Examples: 10^2 = 100 CFU, 10^3 = 1,000 CFU, 10^4 = 10,000 CFU, 10^5 = 100,000 CFU.

Testing results are based solely upon the sample submitted to SC Laboratories, Inc., in the condition it was received. SC Laboratories, Inc., warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of SC Laboratories, Inc. ISO/IEC 17025:2017 A2LA Cert #: 4329.02 Chemical; 4329.03 Biological. Some tests listed on this COA may not be within our scope of A2LA accreditation. Please visit A2LA for more details.





65330219f2dd43c1b77c986e8d25cc2a.1